Search results for "TS - Technical Sciences"

showing 4 items of 4 documents

Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers

2018

Organic-inorganic metal halide perovskites are emerging as novel materials for light-emitting applications due to their high color purity, band gap tunability, straightforward synthesis, and inexpensive precursors. In this work, we improve the performance of three-dimensional perovskite light-emitting diodes (PeLEDs) by tuning the emissive layer composition and thickness and by using small-molecule transport layers. Additionally, we correlate PeLED efficiencies to the perovskite structure and morphology. The results show that the PeLEDs containing perovskites with an excess of methylammonium bromide (MABr) to lead bromide (PbBr2) in a 2:1 ratio and a layer thickness of 80 nm have the highes…

Materials scienceBand gapHOL - HolstHalide02 engineering and technologyPerovskite010402 general chemistry01 natural scienceslaw.inventionTransport layerslawLight-emitting diodeSurface roughnessGeneral Materials SciencePerovskite (structure)TS - Technical Sciencesbusiness.industryStoichiometric perovskite021001 nanoscience & nanotechnology0104 chemical sciencesNano TechnologyOptoelectronicsQuantum efficiencyCrystallite0210 nano-technologybusinessLayer (electronics)High efficiencyLight-emitting diodeACS Applied Materials & Interfaces
researchProduct

Ferroelectricity and piezoelectricity in soft biological tissue: Porcine aortic walls revisited

2017

Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical structure of the aortic wall with different extracellular matrices appears unlikely to be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous switching of the polarization, is a polar crystal structure of the material. Although the PFM measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at different positions on the tis…

PermittivityMaterials sciencePhysics and Astronomy (miscellaneous)FerroelectricityPiezoresponse force microscopyPiezoelectricityHOL - HolstNanotechnology02 engineering and technologyDielectricPFM01 natural sciences0103 physical sciences010306 general physicsTS - Technical SciencesIndustrial InnovationElectrostrictionCondensed matter physics021001 nanoscience & nanotechnologyPiezoelectricityFerroelectricityHysteresisPorcine aortic wallsPiezoresponse force microscopyNano Technology0210 nano-technologyElectric displacement fieldBiological tissue
researchProduct

Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films

2018

The straightforward synthesis and photophysical properties of a new series of heteroleptic iridium(III) bis(2-arylimidazole) picolinate complexes are reported. Each complex has been characterized by nuclear magnetic resonance, UV-vis, cyclic voltammetry, and photoluminescent angle dependency, and the emissive properties of each are described. The preferred orientation of transition dipoles in emitter/host thin films indicated more preferred orientation than homoleptic complex Ir(ppy)3.

PhotoluminescenceMaterials sciencePicolinate emittersGeneral Chemical EngineeringThin filmschemistry.chemical_elementHOL - Holst02 engineering and technologyOrientation (graph theory)010402 general chemistry01 natural sciencesArticleEmissive propertieslcsh:Chemistrychemistry.chemical_compoundIridiumThin filmHomolepticCommon emitterTS - Technical SciencesIndustrial InnovationGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesDipoleCrystallographychemistrylcsh:QD1-999Nano TechnologyCyclic voltammetryElectronics0210 nano-technology
researchProduct

Review article: recommended reading list of early publications on atomic layer deposition - outcome of the "virtual Project on the History of ALD"

2017

Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual proj…

semiconductor manufacturingThin filmsPatent literature2015 Nano TechnologyHOL - HolstLibrary scienceNanotechnology02 engineering and technologydeposition01 natural sciencesPoster presentationsAtomic layer deposition0103 physical sciencesAtomic layer epitaxy[CHIM]Chemical SciencesReading listPatentsComputingMilieux_MISCELLANEOUSgas-solid reaction010302 applied physicsTS - Technical SciencesIndustrial Innovationinorganic materialPhysicsAtomic layer depositionSilicaSurfaces and InterfacesatomikerroskasvatusAtomic layer021001 nanoscience & nanotechnologyCondensed Matter Physicshistory of technologySurfaces Coatings and FilmsALD0210 nano-technologySoviet unionAtomic layer epitaxial growthEpitaxyJournal of Vacuum Science and Technology A
researchProduct